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Combinatorial enumeration and group representations 

D J Newman 
Department of Physics, University of Hong Kong, Hong Kong 

Received 21 May 1982 

Abstract. It is shown that, in addition to the number of distinct equivalence classes, the 
representation characters of a ‘labelling’ can also be derived using standard combinatorial 
methods. These characters provide additional information on the structure of the 
equivalence classes which is relevant in physical applications. 

1. Introduction 

It is often necessary to enumerate the number of distinct configurations of a system 
embedded in a symmetrical framework, such as a lattice, described by a group G. In 
mathematical terms, it is necessary to determine the number of equivalence classes 
(or ‘orbits’) generated by G. The answer to this problem will, of course, depend on 
the symmetry of the system itself, as well as that of the framework in which it is 
embedded. 

Enumeration problems of this type can be solved by applying the standard com- 
binatorial theorems of P6lya and de Bruijn (Berge 1971). P6lya’s theorem applies 
to the case of different labellings (or colourings) of components of a symmetric 
framework, such as points in a lattice, while de Bruijn’s theorem selects systems in 
which the equivalence classes are also closed for a certain label permutation. 

One limitation of the combinatorial approach is that it determines only the number 
of equivalence classes and provides no information on the number of system configur- 
ations contained in each class or the structure of the configurations. Another limitation 
is that the standard approach deals only with ‘classical’ objects (such as atoms) and 
not quantum mechanical objects (such as electrons), but we shall investigate this 
problem elsewhere. The aim of this work is to show that more information can be 
extracted from the standard combinatorial methods of analysis by exploiting the 
relationship between this approach and the (for physicists) more familiar techniques 
of group representation theory. 

One application of this approach, used as an introductory example in § 2, is the 
labelling of symmetry coordinates describing displacements of shells of atoms sur- 
rounding a substituted ion in a crystal (e.g. see Newman 1981). Other examples occur 
in the description of the states of, and interactions between, electrons on lattices. The 
discussion of the a2b2 labelling given in §§ 3 and 4 is closely related to the description 
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of Coulomb interactions. It is intended to pursue these applications in subsequent 
publications in the process of developing a comprehensive theory of many-electron 
states in finite lattices. 

2. Permutation representations for shells of atoms 

It is convenient, in labelling and determining symmetry coordinates for displacements 
in a finite lattice of atoms, to study the permutations of atomic positions in the first 
instance (e.g. see Fieck 1977, Cousins 1978, Newman 1981). The characters of 
permutation representations are usually determined by counting the number of atoms 
left in fixed positions under the symmetry group operations of the finite lattice lor 
larger structure containing the lattice). They are therefore always positive. 

Consider the labelling (or colouring) problem in which a single atom in a shell 
(Newman 1981) is distinguished from the remainder. The symmetry group then 
generates an equivalence class consisting of r labellings, where r is the number of 
atoms in the shell. The permutations of the members of this equivalence class under 
the group operations generate the same set of characters as those determined by 
counting fixed atoms under group operations. We shall show, in 0 3, that standard 
combinatorial procedures can be adapted to calculate the characters corresponding 
to any given labelling. This provides an alternative procedure to counting fixed atoms. 

A third method of finding the permutation representation characters is to determine 
the symmetry group which leaves one member of the equivalence class invariant. This 
must be a subgroup of the atomic framework group. Hence 'correlation' relations 
(such as those given in figure 2 of Newman (1981)) can be used to determine which 
irreducible representations of the atomic framework group correspond to the invariant 
representation of this subgroup. These representations are just the equivalence class 
representations referred to above. It is interesting to note that Littlewood (1958, ch 
IX) describes the subgroups of the symmetric groups in just this way: i.e. by giving 
the compound characters corresponding to the irreducible representations of the 
symmetric group induced by the invariant representation of the subgroup. 

We can make the above considerations more concrete by means of a simple 
example: six atoms at the vertices of an octahedron. For the sake of simplicity we 
shall neglect inversion and reflection symmetries. It is easy to see (using the usual 
notation) that C4 and Cz operations leave the two atoms on the symmetry axis in 
fixed positions, while C3 and C; operations move all atoms. In terms of the usual 
class sequence (E, 8C3, 3C2, 6C;, 6C4) we obtain the characters (6, 0, 2, 0, 2) 
corresponding to the representation AI +E +TI. The combinatoric method of obtain- 
ing this result is described in § 3. 

The third approach mentioned above begins with the observation that a slx-fold 
octahedral system in which one atom is distinguished has symmetry C4. Use of the 
correlation tables (such as those given by Butler 1981) then shows directly that the 
A representation of C4 generates the octahedral group representation AI +E + TI.  

Two useful relationships between combinatorial methods and group representation 
methods have emerged in this section: 

(i) Every equivalence class corresponds to a representation with positive 
characters. 

(ii) Every equivalence class corresponds to a specific subgroup of the overall 
symmetry of the framework. 
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These relationships form a background to the techniques developed in the following 
discussion. 

3. Combinatorial methods and group characters 

Pdlya (1937; Berge 1971) introduced a very powerful method for determining the 
number of distinct equivalence classes corresponding to the labelling (or colouring) 
of elements in a framework. For our present purposes it is appropriate to suppose 
that the framework is a rigid array of similar atoms with symmetry group G. Each 
framework is characterised by a cycle index 

where nA is the multiplicity of class A, and p r  represents a permutation cycle of length 
r. The exponent Ar corresponds to the number of times a cycle of length r appears 
in the operators of class A. 8, nA = IGl, the number of elements in the group G. 

It should be noted that P is determined by the way in which the elements in the 
framework transform under G, not just the group itself. For example, in the case of 
the octahedral system introduced in 0 2, 

(3.2) 

so that 2, rA, = 6 for each term. The corresponding expression for eight atoms at the 
corners of a cube has 2, rA, = 8. 

In order to determine the number of equivalence classes for a labelled framework 
we substitute the following labelling specification for the P k  : 

P = &(P 7 + 8 p  $ + 3p ? p  $ + 6p + 6p :p4) 

P k = l + a k + b k +  . . .  
where a, b etc represent the different labels. The coefficient of aabP . . . in P then 
gives the number of equivalence classes in which CY atoms are labelled a, p atoms are 
labelled b, etc. 

The example introduced in 0 2 corresponds to determining the coefficients of a in 
P with the substitution P k  = 1 + ak. This gives the result 

(3.3) 

showing that the systems in which a single atom of the octahedral framework is labelled 
a form an equivalence class. More useful information can be obtained from this 
calculation however. It will be noticed that the coefficients in equation (3.3) corres- 
ponding to each cycle structure (or class) define the same character set (6,0,2,0,2) 
as was obtained by two alternative methods in 0 2. This simple &tension of the usual 
combinatoric calculation thus provides a third method of obtaining the irreducible 
representations corresponding to a permutation representation. 

In order to develop this idea we now introduce a running example in which the 
vertices of an octahedron are labelled a or b. In particular, we shall be interested in 
the number of equivalence classes for the a2bz labelling which is given by the coefficient 
of a2b2 in P when P k  = 1 + ak + bk. This problem is related to counting the number of 
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different possible Coulomb interactions. According to equation (3.2) the coefficient 
of a2b2 given by 

This result gives no clue as to the form of the different systems which generate the 
equivalence classes or the number of systems in a given class. Nevertheless, it provides 
information which is of use in obtaining diagrams corresponding to each class, as it 
determines the number of distinct forms of diagram to look for. (These are shown 
in figure 1 for the present example.) 

Figure 1. Members of the six equivalence classes for the azb2 labelling of the vertices of 
an octahedron. 

The calculation shown in equation (3.4) in fact provides the complete set of 
characters (90 ,0 ,6 ,6 ,0 )  for the a2b2 labelling. These can in turn be related to the 
decomposition of the labelling into irreducible representations which, however, do 
not themselves correspond to equivalence classes. We shall discuss the analysis of 
labellings into equivalence classes in § 4.  

An extension of Polya’s method by de Bruijn (1964; Berge 1971) allows for the 
possibility that further symmetries are required between distinct labellings. For 
example, we may only be interested in those equivalence classes which are preserved 
under the interchange a-b in the above example. Inspection of figure 1 shows that 
this is true for a, p,  v and 7 but not p and y. 

de Bruijn’s method involves the calculation of the coefficient of a2b2 in P with the 
substitution 

( k  even), k/2 k / 2  P k  = 1 + 2 a  b 

P k  = 1 (k odd). 

This gives (for our example): 
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confirming that two of the diagrams in figure 1 are eliminated by the additional 
restriction of closure under a w b  interchange. Again we note that information is 
being lost in the above calculation, for we have determined the character set 
(0, 0,4, 12,2) in (3.5). 

In physical applications we are likely to take a rather different attitude towards 
the enumeration of equivalence classes from that taken by de Bruijn. The a-b 
interchange symmetry would arise from physical considerations and hence would be 
interpreted as producing a single equivalence class p + y from the separate classes p, 
y rather than eliminating both of them. This approach also enables us to find an 
interpretation of the de Bruijn characters. 

An algebraic expression of the above interpretation is to say that we seek the 
equivalence classes under the direct product group OOH, where H = {E, h }  and h is 
the a w b  interchange operator. H can be treated in an analogous fashion to the 
assignment of parity in point groups which contain the inversion operator. That is to 
say we construct a direct product of the character tables for 0 and H. Then the de 
Bruijn characters correspond to the classes (h, 8hC3, 3hC2, 6hC;, 6h C4) in sequence. 
Putting the two sets of characters together we obtain the number of equivalence 
classes for OOH as follows: 

This shows that two of the original equivalence classes have been condensed into one. 
The methods of analysing characters discussed in 0 4 will enable us to be rather more 
explicit. 

4. Equivalence class representations 

It was shown in 0 2 that each system in an equivalence class determines a unique 
subgroup of the framework group, and that the characters of the equivalence class 
representation can be generated by means of its correlation with the invariant rep- 
resentation of this subgroup. Using this method it is easy to determine a unique 
representation for any subgroup of a framework group. As an example, they are 
given for all subgroups of the octahedral groups 0 and Oh in tables 1 and 2 respectively. 
In these tables (geometrically) isomorphic but non-conjugate subgroups are distin- 
guished, for example DZ and D6, where Dz contains three Cz operators and D; contains 
two C; operators and only one Cz operator. 

It should be noted that every equivalence class group contains the invariant 
representation of the framework group once, and once only. This follows from the 
method of generation outlined above. In the usual application of P6lya’s theorem 
the characters are used to determine the number of occurrences of the invariant 
representation in the labelling representation, and the result is interpreted as the 
number of equivalence classes. 

In 0 3 we noticed that some information was lost in the standard procedure of 
determining the number of distinct equivalence classes using the theorems of P6lya 
and de Bruijn and that, in fact, the complete characters of the representations induced 
by the labelling can be derived. Characters derived from Pblya’s theorem for the a, b 
labelling of the six vertices of an octahedron are given in table 3 for the group 0. It 
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Table 1. Equivalence class representations and characters for the octahedral group 0. 

Classes 
Subgroup E 8C3 3C2 6C; 6C4 Irreducible compone,nts 

0 1 1 1 1 1 AI 
T 2 2 2 0 0 AI+A2 
D4 3 0 3 1 1 A i + E  
D3 4 1 0 2 0 AI +T2 
c3 8 2 0 0 0 Ai +A2 +TI +T2 
c4 6 0 2 0 2 A i + E + T l  
D2 6 0 6 0 0 Ai +A2- 2E 
D; 6 0 2 2 0 A l + E + T ,  
c2 12 0 4 0 0 Ai +A2+2E +Ti +T2 
c; 12 0 0 2 0 Ai + E + T l +  2T2 
c1 24 0 0 0 0 Ai +A2 +2E+3T1 +3T2 

will be seen that these characters alone are sufficient to specify uniquely the symmetry 
of the members of all equivalence classes in all cases except one. We cannot, of 
course, expect to obtain a unique reduction to equivalence class representations in 
general (in an analogous way to the reduction to irreducible representations) because 
there are eleven distinct equivalence class representations for the group 0, and only 
five classes. 

We now return to the example of a2b2 labelling, which was introduced in § 3. We 
shall use curly brackets to denote representations corresponding to the enclosed 
symbols. Inspection of tables 1 and 3 shows that we may write {a2b2} as a sum over 
possible equivalence class representations as follows: 

{a2b2} = A{D2}+ B{D;} + C{C2}+ D{C;}+ E{C1}. 

Using the characters given in table 1, three equations can be obtained: 

90 = 6A +6B +6C + 1 2 0  +24E, (4.1) 

6 = 6A +2B +4C, (4.2) 

6 = 2B +2D, (4.3) 

where all unknowns are positive integers or zero. Equation (4.2) allows the solutions 

(i) A = 1, B = C = O ,  

(ii) A =0 ,  B = 3 ,  c=o, (4.4) 

(iii) A =0, B = 1, C = l .  

Putting these values into equations (4.1) and (4.3) it is easy to show that all three 
solutions lead to possible values of D and E as follows: 

(9 D = 3 ,  E = 2 ,  

(ii) D =0 ,  E = 3, (4.5) 

(iii) D =2 ,  E = 2 .  

Although we cannot distinguish between these three solutions algebraically, figure 
la alone shows it is possible to construct a DZ symmetry class, so that (i) is the unique 
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Table 3. Octahedral group 0 representations generated by a, b labelling of the six vertices 
of an octahedron. 

Labelling 

Classes 
(16) 8(32) 3(122’) 6(23) 6(124) Equivalence 
E 8‘23 3C2 6C; 6C4 classes 

a, b, asb, ab5, as, bS 4 0  2 0 
a’, b2, a4b2, a2b4, a4, b4 15 0 3 3 
ab, a4b, ab4 30 0 2 0 
a3, b3, a3b3 20 2 4 0 
a2b, b2a, a2b3, a3b2, a3b, ab3 60 0 4 0 

a6, b6 1 1  1 1 
a2bz 90 0 6 6 

Equivalence classes g the subgroup [6]+[23] of Sg 

6 0 
a2b2(j: 0 6 

60 0 4 0 

2 C4 
1 D4 + C; 
2 C l + c 4  
0 c3+c2 
0 2c1  + c2 
0 see text 
1 0 

0 b + C i  
0 3c;  + c1 
0 2C]+ c2 

correct solution to our problem, and 

{azb2} = {D2} + 3{C;} + 2{C1}. 

This approach is still not entirely satisfactory. Although it provides a much more 
detailed check on the enumeration of equivalence class diagrams than that obtained 
in the usual method of applying P6lya’s theorem, it still does not provide an explicit 
set of instructions for constructing such diagrams. Yet, in principle, there is sufficient 
information in the algebraic structure to enable this to be done. 

Any labelling of n objects generates a single equivalence class with respect to the 
symmetric group S, .  Hence, if we can find an intermediate group X in the chain 
S6 2 X 3 0, it may provide a unique separation of the a2b2 labelling class in s6. These 
equivalence classes may then, in turn, provide a unique separation into the equivalence 
classes of the group 0. In fact Littlewood (1958, p 274) lists a subgroup of order 
120, denoted by the S6 characters [6]+[Z3], which has just this property. 

In S6, the azb2 labelling is invariant under the group E, (12), (34), (561, (12)(34), 
(12)(56), (34)(56) and (12)(34)(56). The subgroup [6]+[23] does not contain the 
elements with cycle structure 142, so that the only possible non-trivial symmetries of 
the a2b2 labelling are the four-element group E, (12)(34), (12)(56), (34)(56) and the 
two-element groups E, (12)(34)(56) and E, (12)(34), etc. These define equivalence 
classes with 120/4 = 30 and 120/2 = 60 components respectively. Hence the 90- 
component equivalence class corresponding to the a2b2 labelling must break down 
into one class of each dimension or three of dimension 30. The characters for each 
class are shown at the bottom of table 3, where the unique separation into [6]+[Z3] 
equivalence classes and the consequent unique separation of these into 0 equivalence 
classes is also shown. 

The de Bruijn characters for the direct product of the point symmetry and a-b 
label interchange groups are given in table 4. In the cases of ab and a3b3 labelling 
the equivalence classes given in table 3 are not affected. However, as was shown in 
8 3, the aZbZ labelling has one less equivalence class with a-b, interchange symmetry. 
This implies that two of the original equivalence classes, which interchange under 
a-b, have been joined into a single class. (Inspection of figure 1 shows these to be 
the equivalence classses p and y.)  
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Table 4. Characters for the additional classes of the direct product group O@(E, h) .  

h 8hC3 3hC2 6hC; 6hC4 Representations 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
4 
0 
4 
8 
0 
4 
0 
8 

2 
4 
2 
2 
0 
0 
4 
2 
4 
0 

2 
0 
0 
2 
2 
0 
0 
0 
0 
0 

& + 4 2  
Al +A2+-q1 +T2 

AI +A2 +-E+ I? 

A1 +A, + 2E+T1 fT2 

AI + A, + E + I? + T1 + T2 
A , + E + T ,  +T2+T2 
A, + A 2  + E + E + 2T2 +T2+ 2f1;eT, 

A1+E+T1 

Al+E+T,  

Ai +A2 + 2E+T1 +T2 +2T1+2T, 

Subgroups of the direct product group OOH are of two types: those with zero 
and those with non-zero characters for the additional classes. All possible examples 
of the latter case are given in table 4. Group labels consist of two parts written XIY, 
where X corresponds to the symmetry of the system with h C + C, where h =at* b 
and C is any rotation operation. Y gives the spatial symmetry subgroup of 0 for 
members of the equivalence class. All subgroups with zero additional characters 
correspond to adjoining two similar subgroups S of 0, which we write as ( S s ) .  These 
groups correspond to a doubling of the size of the corresponding equivalence class. 
Note that the additional group labels provide a more precise description of the 
equivalence classes, quite apart from allowing the separation of those classes which 
are closed under a-b operations. 

5. Discussion 

We have shown that considerably more information can be obtained about the 
equivalence classes generated by the labelling of a symmetrical framework by using 
all the (character) information available. The problem of finding a unique breakdown 
of a labelling into equivalence classes sometimes requires the identification of suitable 
groups intermediate between S, and the spatial symmetry. Some of thewgroups have 
already been identified by Littlewood (1958) and others, but a more thorough investi- 
gation of these groups and their properties will be necessary in order to develop the 
techniques introduced in this paper into a systematic method. 

Appendix. Schur functions and Polya’s method 

The method described in this paper involves generating the complete set of characters 
associated with a given labelling and then analysing them into equivalence class 
characters. The method involves the search for positive integer solutions to a set of 
linear simultaneous equations, where each class provides a separate equation. An 
equivalent method would be to express both the labelling representation and the 
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equivalence classes as combinations of irreducible representations. Then the analysis 
would consist of finding the positive integer solutions for a set of equations, each of 
which corresponds to an irreducible representation. 

The number of each type of irreducible representation in a labelling can, of course, 
be determined from the characters. Alternatively, we could combine the formulae 
for the characters in such a way as to give the number of irreducible representations 
directly. In fact, Pblya’s original method does just this for the number of invariant 
representations by adding the products of characters with class size and then dividing 
by the order of the group. Similar formulae can be derived using the characters ,y?’ 
for the irreducible representation g and class A. Let nA be the number elements in 
a class and pA have the same interpretation as in 0 3. Each irreducible representation 
can then be associated with its own cycle index 

which generalises equation (3.1). 
It is particularly interesting to note that, in the case of the symmetric groups, this 

formula is identical to the expression for the Schur (or S) functions {g} given by 
Littlewood (1958 equation (6.2; 14)). We have therefore discovered a physical 
application for a generalised Schur function which is generated by (Al )  for any group 
of permutations G. 
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